If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2=72x
We move all terms to the left:
18x^2-(72x)=0
a = 18; b = -72; c = 0;
Δ = b2-4ac
Δ = -722-4·18·0
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-72}{2*18}=\frac{0}{36} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+72}{2*18}=\frac{144}{36} =4 $
| (3^x)=243 | | -2x+4x=-26+1 | | x^2+2x+18=-2x-11 | | a-1+1=a | | (4)(4+x)=(3)(3+21) | | b÷3.3+5=15 | | 1/3(x+3)=28 | | 3x-8=23- | | x^2+31x=11x-36 | | x+2-3=13 | | 2(3x+3)=4(1-3x) | | 1-3n=n-3 | | 5p=8p-11 | | 3x+20+2x+13=9x+5 | | x3+263=x13-7 | | 1/4(f+5)=8 | | v/4-11=3 | | 2x+4+6x+3+7x+8=180 | | 1x+3=5x+4 | | 5+12x=3+15x | | 126=-3(5r | | 7x-40=-4x+15 | | 2(x+$2.60)=$16.40 | | 10d=6d | | (10x-2)-(9x+3)=-1 | | k2+4k=96 | | 2y(y-30)=0 | | (4x+2)-(3x-4)=7 | | 2n+4+3n+3=55 | | 9x+90=360 | | 18-2x=13x-27 | | 7*x=36 |